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Executive summary 

This deliverable presents the overall architecture of PASSIONATE and the areas of under 

investigation of the project. Its main chapters are Chapters 1 and 2. In particular, Chapter 1 at 

first presents that background regarding the use of artificial intelligence in current 

telecommunications networks and proceeds with motivation  behind  the physics-based 

approach followed in the project. Chapter 2 introduces the 3D architecture considered in the 

project, detailing the nodes that comprise the individual layers, particularly the terrestrial, 

aerial, and space layers. Finally, the chapter is concluded with an overview of the different 

areas of interest in the 3D network that will be investigated in the project.  

 

D2.1 reports the initial version of the architecture and gives input to D2.2: Use cases and 

KPIs and the deliverables of WPs 3-5.
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1 Introduction  

1.1 Background 

6G is at the gates with the first commercial deployments expect around 2030. 6G is not just 

considered to be a gradual evolution of 5G, but it will be designed to combine both 

communication and computing into a hyperconnected world of digital and physical experiences 

[1]. Several new use cases are foreseen for this new generation of networks, such as: i) 

enhanced human communication that includes extended reality immersive holographic 

communications, multimodal communication for teleoperation, and intelligent interaction and 

sharing of sensation, skills, and thoughts; ii) enhanced machine communication that includes 

robot network fabric and interacting cobots; iii) enabling services, such as 3D hyper accurate 

positioning, localization, and tracking, interactive mapping, digital healthcare, automatic 

detection, recognition, and inspection, smart industry, and trusted composition of services; iv) 

digital twins; v) autonomous and connected transportation; vi) fixed wireless access; zero-

energy Internet of Things (IoT) devices empowered by energy harvesting; and vii) critical 

communications [2], [3]. Hence, we understand that there is a multitude of new services in 6G 

networks that need to be facilitated.  Those depart from the primary target of achieving high 

rates that governed the telecommunications generations up until now, with more targets of 

interest, such as sensing related capabilities, sustainability, and interoperability. 

Apart from the multitude of services that would need to be facilitated by the forthcoming 

generation, the networks 6G and beyond networks are foreseen to heavily increase in size. In 

particular, while 95% of the Earth’s population has cellular coverage, less than 45% of the 

landmass of the Earth [4] and only 15% of its surface has such coverage [5]. This means that 

almost 400 million people, a quite large number which is the rest 5%, do not have access to 

any mobile network. These are people that primarily rural, poor, and sparsely populated areas. 

Covering those areas poses a great challenge due to the unviability in terms of CAPEX/OPEX 

and energy consumption, from the operators’ point of view, of heavily densifying with base 

stations an area with a low penetration of users. Instead, what has been brought forward as a 

radical solution is to integrate the terrestrial networks with non-terrestrial ones and create a 3D 

network of networks [6].   

The non-terrestrial networks encompass flying nodes either aerial one, such as unmanned air 

vehicles, planes, and high-altitude platforms (HAPS) or space ones, such as low-Earth orbit 

(LEO), medium-Earth orbit (MEO), and geostationary orbit (GEO) satellites. Due to their 

much larger footprint on Earth with respect to their terrestrial counterparts, not terrestrial 

platforms can provide the same coverage that terrestrial networks can provide with much 

smaller number of nodes. In particular, an indicative study has revealed that in order to provide 

full 5G coverage in the UK, only 60 HAPS would be requited. In contrast thousands of 

additional terrestrial small cells would be needed for a full 5G coverage. That difference is 

substantial and so we understand that in such a cases providing the necessary coverage by non-

terrestrial networks (NTNs) is the only viable solution. The same holds with the space segment. 

In particular, in the next years to come thousands of LEO satellites are expected to fly above 

Earth, creating mega-constellations. Private ventures have already been realized with aims 

towards mega-constellations such as the one of Starlink [7].  

Based on the above, we understand that 6G and beyond networks are going to be highly 

complex, both in terms of services that they would need to accommodate, but also due to the 

inclusion of both the aerial and space layer. Hence, a large network dynamicity is foreseen. 

More specifically, a list of challenges future networks will face is the following [8]: 

● Very high complexity, related to the integration the terrestrial, aerial, and space layers, 

heterogeneity, agility, and 3D mobility of users and base stations. An indicative 
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example of how dynamic the network can be is the case of LEO mega-constellations, 

where thousands of LEO satellites move with velocity 7.8-8 km/s. 

● The requirement to support a very large amount of traffic to/from trillions of user 

equipments (UEs) that include IoT devices. 

● The need to enhance users’ quality of experience (QoE), enabled by Tbps speeds and 

reduced latency. 

● The requirement to intelligent virtualize and dynamically manage the resources. 

● The integration of the capabilities of the user devices in network communication or 

computation aspects. 

● The need to enable computational and caching services at different levels of the 

network, such as cloud and fog/edge, and user device clusters. 

Based on the challenges above, it is clear that the allocation of resources in such a network 

cannot be performed by manual means. Decisions need to be taken fast that involve a multitude 

of parameters. Hence, in such an ecosystem network automation through artificial intelligence 

(AI) seems the only viable approach. In communication networks, automation first appeared 

for 3GPP Release 8 with the notion of self-organizing networks (SONs) [9]. The autonomy of 

SONs is achieved by using different algorithms and AI. The following 3 distinct categories 

define SONs [10]: 

● Self configuration: It involves automatic recognition and registration of new base 

stations, adjusting technical parameters to avoid interference, towards the 

maximization of coverage and capacity. 

● Self optimization: It focuses on optimizing base station parameters for specific 

purposes, such as preserving service level agreements during congestion or changing 

spectrum availability. 

● Self healing: It enables the network to recover from failures, minimizing service 

degradation for affected users. 

In terms of different optimization areas SONs can operate at, the following are the main areas: 

● Dynamic optimization of spectrum usage: SONs optimize the use of the radio 

spectrum, in a dynamic fashion, with the aim of ensuring efficient utilization. The 

optimization involves adjusting the frequencies used by different network elements to 

minimize interference and increase coverage and capacity. By allocating spectrum 

resources in an intelligent wat, SONs ensure that the network can handle varying loads 

and conditions efficiently. 

● Optimization of control plane resources: SONs optimize the control plane resources 

by dynamically adjusting parameters and algorithms with the purpose of improving the 

network performance. This optimization reduces latency, improves that network 

performance, and ensures that the control plane can efficiently manage data flows. 

● Avoiding congestion: Through predictive analytics that analyze real-time network 

conditions, SONs employ mechanisms to avoid congestion before it occurs. This 

proactive approach to congestion ensures that the responsiveness and reliability of the 

network, even under heavy load. 

● Optimal Resource Utilization with Maximum User Experience: SONs utilize 

network resources optimally to provide the best possible user experience. This involves 

balancing the distribution of network resources among users. In this way, they ensure 

fair access and maximize the quality of service (QoS) for all users. So the network can 

support many users at once. 
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● Self-Healing Mechanisms: This corresponds to the mechanisms enacted for 

recovering from failures and degradations in service. In particular, when a network 

element fails or a service issue appears, other nodes in the network can temporarily 

operate in the impact area, minimizing service disruption. After the issue is resolved, 

the network returns to its normal state. 

The SONs are further categorized in centralized, distributed, and hybrid. In centralized SONs 

a central entity, such as a server, gathers all the necessary data from the whole network, and 

decides optimally for the whole network. The advantage of such an approach is that it leads to 

globally optimal decisions. However, a typical drawback is the latency to reach this due to the 

need to gather an immense amount of data to a central entity. For highly dynamic networks, 

such as the  integrated terrestrial-non terrestrial networks, it is very likely that by the time the 

necessary amount of data is gathered to the central entity, the network and the traffic conditions 

have substantially changed. This would render any AI-based decision outdated. Furthermore, 

having single only entity gathering all the information is prone to single-point of failure  

A solution to the above issue is given by the distributed SON approach, where the network 

intelligence and automation are embedded within the individual network elements, such as 

base stations and routers. The straightforward advantage of this approach is the fast response 

times since the decisions are taken locally and its robustness to potentially outdated data. 

Moreover, it avoids the single-point of failure of the centralized approach. However, a 

drawback of the method is how to effectively perform coordination among many distributed 

entities and reach a sub-optimal solution that is not far from the globally optimum point. 

Finally, the hybrid SON approach balances the advantages of the centralized and distributed 

approaches. 
 

1.2 Motivation  

Based on the above, we understand that via AI SONs offer numerous benefits to 

communications networks, such as reduction in manual operation of the networks, improved 

performance, reduction of network downtime, enhanced QoS, cost savings, and proactive 

network management. Such benefits are expected to be even more pronounced in 6G and 

beyond networks due to their much higher complexity, dynamicity, and the increased number 

of services they would need to facilitate. In fact, it is foreseen that 6G communication networks 

should be the first generation of networks with native AI, so that AI will not merely be an 

application but an inherent part of the infrastructure, network management, and operations. 

Yet, a purely data-driven approach has major limitations due to its resource constraints, high 

complexity, and black-box nature. However, to perform the above in the optimal way requires 

deep knowledge in network dynamics and machine learning (ML), so to deploy the best 

approach based on the particular network configuration.  

Traditionally, popular ML approaches such as deep neural networks (DNNs) have successfully 

been used in the areas of computer vison and natural language processing, where accurate 

statistical models are typically scarce [11]. This is the reason the sue of DNNs by several 

groups for the resource allocation optimization wireless networks. However, in very complex 

and dynamic networks, such as the 3D ones, massive data sets would be required to train such 

DNNs for learning a desirable mapping. In addition, even the case of using DNNs that are pre-

trained can result to substantial computational burdens due to their large parameterization [11]. 

Hence, this can be a bottleneck for low capability devices, such as mobile phones and IoT 

devices. Finally, such an extreme parameterization and abstractness of DNNs make it totally 

black regarding how the decisions are taken and any potential of having analytical guarantees. 

As a result they offer poor reliability and explainability.  
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In light of this, PASSIONATE will unlock ML for wireless by customizing and accounting-

by-design the unique properties (“physics-based”) of the networks they are applied to. Physics-

based ML is, in addition, the suitable approach to ensure the scalability, generalization, 

reliability, and user trust of ML, enabling ML solutions that are technically robust and possibly 

explainable-by-design. In PASSIONATE, we will develop the understanding and vision of 

what the application of AI/ML to the wireless network can provide and design use cases that 

can take advantage of this technology. For these use cases and with the new physics-based 

AI/ML tools, we will design new PHY, MAC, and RRM techniques and algorithms that 

achieve the ambitious goals of future mobile networks regarding coverage, data rate, latency, 

and energy consumption. We will evaluate experimentally by realistic simulations and 

measurements the achieved gains and contribute to creating data sets that can be used for the 

community. By advancing the state of the art and stimulating research and technology-based 

innovation through dissemination, PASSIONATE will create awareness and facilitate the 

positive impact of advanced wireless communications on society and the economy.  
 

2 Passionate Network Architecture and Areas of Study 

2.1 Passionate Network Architecture  

The considered 3D network architecture of PASSIONATE is depicted in Figure 1. The network 

amalgamates terrestrial, aerial, and space layers. They are described in the following: 

 

Terrestrial layer: It involves a multitude of heterogeneous radio, wireless, cellular, ground 

satellite, and small cells operating at different frequency bands, primarily sub-6 GHz and 

mmWave. Until 5G, the antennas of these BS nodes have been downwards tilted to serve the 

ground users. However, PASSIONATE follows the changes considered in the 6G network 

concept by either equipping them with a large number of antennas to enable 3D beamforming 

or with uptilted antennas. This would allow, in turn, to better interconnect (integrate) terrestrial 

BSs or users with other aerial and space users, including flying BSs installed on-board satellite 

spaceship, aircraft, HAPS or UAVs. The availability of such access networks in the different 

strata provides a resilient communication network to aircraft, which supports their critical-time 

operations and safety. It also enables the flying objects (e.g., aircraft, UAVs) to select the air-

to-ground links according to their communication performance requirements. Obviously, 

network scenarios such as traffic or user load balancing or traffic re-routing can be realized to 

better serve aerial and space users. The TN infrastructure also includes different gateways that 

connect the aerial and space platforms to the terrestrial core network through feeder links. 

Finally, we assume that numerous reconfigurable intelligent surfaces (RISs) are deployed in 

the terrestrial segment, mounted on the facades of buildings for instances. RISs can provide 

alternative routes for  communication  through single-hop reflections, especially for 

communication in mmWave bands that are more susceptible to blockages than their sub-6 GHz 

counterparts. 

Aerial layer: It comprises platforms such as commercial airplanes (aircraft), UAVs, and 

HAPSs that fly at altitudes of 8-11 km, up to 1 km, and 17-20 km, respectively. In 6G networks, 

the aerial platforms are envisioned to be boarded with 5G gNBs. These turn them into flying 

BSs that can serve users within the same network stratum, as well as other users within the 

strata above and below theirs. The advantage of operating gNBs on-board HAPS stems from 

their much lower altitude relative to the ground than the satellites installed in the different 

orbits. Also, the quasi-stationary nature of HAPSs eliminates the need for frequent handovers, 

like the case with the non-Geostationary Orbits (NGSOs) when they are about to lose visibility 

with ground terminals. Furthermore, their altitude and size allow them to be equipped with 
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sizeable antennas that can offer high gains. This could enable direct handheld device access 

even at mmWaves (e.g., Ka band). Moreover, as their service coverage gets wider, relying on 

their much larger footprint compared to the terrestrial gNBs, it would better prevent the 

frequent handovers of high-mobility users such as aircraft or UAVs, in contrast with fast-

moving ground network mobility, such as trains, where terrestrial cells may fail in providing 

ubiquitous services. However, what differentiates this stratum more is that the gNBs on-board 

the platforms deployed within this stratum can act as a relay node enabling the expansion of 

the visibility of NGSOs to better serve ground users and those in the other network strata. The 

UAVs have been used for different purposes, including military, cargo, and rescue operations. 

They can also act as aerial gNBs in the case of natural disasters and high-traffic demand events 

like sport events. Airplanes (aircraft) require resilient and reliable networks not only to support  

 
 

Figure 1: PASSIONATE’s architecture. 

 

critical operations or safety, but also to provide continuous broadband connections for 

passengers on board. This has been challenging and costly with TN networks and can only be 

expected during the take-off and landing times. However, when the airplanes spend the 

majority of their flight time at high altitudes, the PASSIONATE integrated 3D network can be 

deployed to support the required broadband coverage, which can be provided by means of 

satellites like LEO, NGSO, and HAPS. 

 

Space layer: It is the upper stratum in the 6G PASSIONATE 3D network architecture. It 

comprises satellites operating at different altitudes in orbit around the Earth. Satellite 

communications have been around for sixty years; it has become integrated and is increasingly 

unified as part of the NTN within the 3GPP framework. 

Satellite trade-offs 

When designing the satellite to provide satellite communications services (satcom), there are, 

of course, many trade-offs that need to be considered. Factors such as the launch mass, the 

amount of power that can be generated and the excess heat that can be radiated, and the 

availability of electronics suitable for the increased levels of radiation above the atmosphere 

all need to be considered. A related trade-off is for the satellite to be either bent-pipe or 
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regenerative. Bent-pipe satellites have been the predominant GEO satellites for many years as 

most of the available power budget is used to efficiently receive and retransmit the same radio 

signal; whereas regenerative satellites demodulate the signal, may process the data in some 

way and then retransmit it. This does improve the E2E link budget as there is no additive noise 

from the uplink and downlink transmissions however it also signifies that less power is 

available for transmission. Two benefits of regenerative satellites supporting NTN are that they 

facilitate ISLs and allow some aspects of the 5G CN to be instantiated in space thereby 

improving CP response times. Regenerative payloads are directly connected with the notion of 

flexible payloads. Flexible Payload is based on the principle of programming the logical 

resources of hardware boards (e.g., FPGAs) and applies software virtualisation mechanisms on 

the base OS. Thus, through Flexible Pay¬loads equipping NTN nodes, such as satellites and 

HAPS, resources such as power, band¬width, and beams, can be adjusted through software on 

the ground (SDR-based) in accordance with the application demands. The capabilities of each 

of the corresponding NTN nodes, such as size and generated power, will dictate the FPGA 

capabilities and the corresponding Flexible Payload functionalities that can be realized. 

Characterisation by orbit 

Satellites are usually characterized by orbit type as follows: 

● GEO – geostationary orbit where the satellites orbit above the equator so that they 

appear stationary in the sky from the ground; only a few satellites are needed to provide 

near global coverage (only the polar regions are excluded), but the propagation delay 

is too high for some applications and the link budget tends to require higher gain 

antennas for the user equipment; 

● LEO – low earth orbit satellites are much closer to the ground, which improves the link 

budget performance and reduces the propagation delays at the cost of the satellite 

moving rapidly across the sky when viewed from the ground and needing many 

satellites in the constellation to provide continuous coverage; 

● MEO – medium earth orbit satellites can be found between LEO and GEO; they provide 

global coverage with far fewer satellites than LEO with an intermediate propagation 

delay and link budget performance; 

● HEO – highly elliptical earth orbit satellites are a specialist application where a few 

satellites are launched into the same orbit that drops low (and fast at perigee) before 

raising to a much higher (and slower at apogee) part of the ellipse. If these orbits are 

also synchronized to the Earth’s rotation, they can provide GEO-like performance in 

the polar regions when the satellites move relatively slowly across the sky. 

PASSIONATE 3D edge computing and storage continuum is another capability that would 

majorly distinguish the designed 3D network in the sense it would become more responsive to 

service demands type and volume and match it with the requested infrastructure availability in 

an efficient manner relying on real-time predictive data analytics. Noting that a key difference 

between the 3GPP’s Release 19 and earlier releases regarding the integration of TNs with 

NTNs is that Release 19 will include the regenerative payload feature for NTN platforms. This 

means that the nodes will be able to encode and decode the received information and act as 

aerial and space gNBs. This, in turn, will enable them to act as edge computing and storage 

units, which can heavily alleviate the large amount of data that the cloud TNs need to process 

and store. Hence, the PASSIONATE 3D network is a TN-NTN distributed edge computing 

and storage network that allows such tasks to be performed in terrestrial, aerial, and space 

nodes. This can be possible by the existence of inter-space-air-terrestrial links for fast data 

routing among nodes. The federation of the multi-edge computing deployed in the different 3D 

network strata will be of paramount importance to support the full single pilot operations. It 
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will also allow the running of machine learning and artificial intelligence algorithms, training, 

and testing on the fly to better ensure aircraft operations and navigation. 

The above infrastructure contains diverse resources, including radio channels, wireless, cellular 

and satellite air interface and spectrum, 5G core network functions, as well as added memory, 

storage, processing, and communication payload to HAPSs and satellites, in addition to the 

content cache and edge computing distributed in the different network strata. These diverse 

resources provide opportunities for creating and deploying massive virtualisation assets to 

support 3D network slices that can meet the emerging requirements of E2E space, aerial and 

ground applications. It helps space, aerial and ground network operators to immediately open 

their physical network infrastructure platforms to the concurrent deployment of multiple 

logical self-contained networks, virtualised and orchestrated according to their specific E2E 

service requirements. The created network slices are temporarily owned by tenants who have 

control over multiple layers, i.e., the physical layer, the virtualisation layer, and the service 

layer in 3D, of a unified 5G infrastructure, while they are also verticals. That is, they integrate 

the 5G infrastructure vertically on ground, aerial and space networks. The availability of this 

vertical market multiplies the monetisation opportunities of the network infrastructure as (i) 

new players, such as the space industry and military, may come into play, and (ii) a higher 

infrastructure capacity utilization can be achieved by admitting network slice requests and 

exploiting multiplexing gains. With network slicing, different services, such as space IoT, 

safety-critical aircraft operations connectivity, UAV connectivity, and mobile broadband, can 

be provided by different network slice instances. Each of these instances consists of a set of 

virtual network functions that run on the same infrastructure with a tailored orchestration. In 

this way, heterogeneous requirements can be provided on the same infrastructure, as different 

network slice instances can be orchestrated and configured separately according to their 

specific requirements, e.g., in terms of network QoS. Additionally, this is performed in a cost-

efficient manner as the different network slice tenants share the same physical infrastructure. 

 

2.2 Areas of study  

Based on PASSIONATE’s architecture, we will now present some indicative areas for the use 

of physics-based AI models. 

AI/ML for wireless]: ML is widely used to tackle challenging problems in wireless networks. 

However, ML architectures applied in wireless are typically inherited from other fields (e.g., 

computer  vision and natural language signal processing) and are blindly applied to wireless. 

When applied in large-scale networks, these ML models result in poor scalability and poor 

generalizations, with large performance gaps compared with theoretically optimal optimisation 

methods. To unlock ML for wireless, it is essential to customise and account-by-design the 

unique properties (“physics-based”) of the networks they are applied to, while ML methods for 

wireless are currently inherited from other fields and ignore the network structure [12]. In 

particular, the application of deep learning (DL) to wireless communications problems has 

attracted significant attention, with one of the considered problems being hybrid analog/digital 

beamformer (HBF) design. Two typical DL techniques are often applied: purely data-driven 

DL and hybrid model-based DL. The former relies mainly on the learning capability of DNNs, 

convolutional neural networks (CNNs), or deep reinforcement learning to generate HBF 

beamformers. Yet, such a purely data-driven DL approach has major limitations due to its 

resource constraints, high complexity, and black-box nature [13]. Due to the large-scale 

deployment of massive MIMO (mMIMO) systems, efficient DL models with lower complexity 

implementations and stable and fast convergence need to be developed. In turn, a physics-

based approach to DL encompasses a family of hybrid methodologies for combining domain 

knowledge with data to realize efficient inference mappings. A leading hybrid methodology is 



 

D2.1- Initial report on network architecture, interfaces, and architecture evaluation  
 

  CHIST-ERA PASSIONATE                                              27.11.2024                                                  17                                                              

 

deep unfolding, which leverages DL techniques to improve model-based iterative optimisers 

in terms of convergence, robustness, and performance [14]. Also, graph neural networks 

(GNNs) have achieved promising results in applications including beamforming, and it was 

shown that a GNN trained on a network with 50 users is able to achieve near-optimal 

performance in a larger network with 1000 users [15]. Furthermore, thanks to the parallel 

execution, GNNs are computationally efficient. However, despite these empirical successes, 

the theoretical underpinnings and design guidelines remain elusive, which hinders the practical 

implementations of GNNs and deep unfolding methods in wireless networks. 

Sensing and context awareness: In modern radio communication networks nodes are required 

to be aware of their context of operation, utilizing information on ambient networks, links, 

devices, and applications. This allows for the efficiency of network operation and the quality 

of provided services. PUT presents in [16] a complete overview of AI/ML methods applied for 

context-awareness in radio communication systems. Additionally, in [32] Spectrum Sensing 

(SS) architectures based on Federated Learning (FL) algorithms have been evaluated 

particularly for their effectiveness in SS performance and security. An important part of context 

awareness in 3D networks are the communication and computing resources at different layers. 

In [33] PUT has analyzed communication and computing resources vs. arriving requests (from 

the end-users) based on model-based classification. Again security aspects have been also 

considered. The identified knowledge gaps are as follows: 

● When AI/ML methods are applied to enrich context awareness, they must converge at 

a required pace due to the system dynamics, and with accuracy tailored to the 

application.  

● A major challenge is to define and incorporate the required functionalities of 

sensors/nodes for context-information acquisition, storage, and distribution while 

maintaining low power consumption. 

● Without a comparison of the performance of various models on the same data, it is hard 

to design an approach that works best and to decide in what aspect it could be improved. 

● The context awareness in 3D network architecture would require model- and physics-

based approach to correctly manage communication and computing resources vs. 

requirements (demand vs. offer) 

● Apart from the performance efficacy of different physics-based and model-based ML 

algorithms utilizing context awareness, their complexity and security needs to be 

considered. 

Waveforms and transceivers]: The appropriate waveform design for 6G communications 

remains uncertain, as various use cases will involve the use of both lower and higher 

frequencies, as well as the ability to support challenging high-mobility scenarios. This is 

particularly relevant for PASSIONATE network architecture, in which NTNs are integrated 

into the terrestrial 5G/6G communication networks. However, the traditional orthogonal 

frequency division multiplexing (OFDM) may result in poor performance under high Doppler 

spread effects, and, additionally, its high peak-to-average power ratio (PAPR) can push power 

amplifiers into their nonlinear operational regions, extremely degrading communications 

performance. Because of this, OFDM needs to be adapted to overcome these challenges, and 

new waveform designs are being investigated. 

Recently, a constant envelope OFDM (CE-OFDM) method was proposed [17] to enhance 

amplification efficiency; however, it shows performance limitations in high time-varying 
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conditions. Conversely, orthogonal time frequency space (OTFS) [18] has been suggested for 

time-varying channels but faces similar PAPR challenges as OFDM. Thus, identifying a 

waveform that balances all necessary requirements is still an open research area. 

UC3M has recently introduced frequency-modulated OFDM (FM-OFDM) [19] featuring a 

constant envelope and improved resistance to Doppler spread, though its theoretical advantages 

are yet to be verified in practical settings, where UC3M has started analyzing its practical 

performance for NTNs. 

However, independently of the chosen waveform, current communication transceivers rely 

heavily on the precision of channel state information (CSI). Acquiring this data usually requires 

pilot signals, and the necessary overhead rises with both the number of antennas and time-

variability of the channel. To bypass the need for CSI acquisition and sharing in massive 

MIMO, non-coherent methods have been proposed [20], allowing operation in single-user 

contexts with very high mobility. Extending these approaches to multi-user scenarios remains 

complex, though early work incorporating AI solutions has been reported by UC3M [21].  

Another promising technological advancement for enhancing spectral efficiency are full-

duplex (FD) communications. However, the cancellation of the loopback signal or self-

interference (SI)—caused by signals leaking from the transmission side into the reception 

chain—remains a key challenge. Some recent studies indicate that AI-driven signal 

cancellation may outperform traditional signal processing approaches in this area [22].  

 

RIS/Intelligent Surfaces/Holographic Radio: The controllability of the wireless environment 

is a concept that leverages recent advances in the field of dynamic metasurfaces, enabling RIS 

[23]. An RIS is a planar surface made of many quasi-passive and low-cost scattering elements, 

each of which can impose a phase shift/amplitude on the impinging electromagnetic signals in 

a fully customized way. These surfaces can configure the wireless propagation environment 

into a transmission medium with more desirable characteristics [24]. An industry specification 

group was established within ETSI [25].  

A promising technology to realize massive arrays in a dynamically controllable and scalable 

manner at reduced cost and power consumption utilizes large surfaces of radiating 

metamaterial elements. These are known as dynamic metasurface antennas or holographic 

MIMO systems [26], which enable the implementation of a new generation of wireless 

transceivers with thousands of controllable radiating elements and few RF chains. Their 

benefits include the possibility of realizing many communication modes even in line-of-sight 

(LOS) channels, which results in a dramatic increase of the spatial capacity density, 

Current research on reconfigurable surfaces and dynamic holographic massive MIMO 

transceivers is insufficient to assess the benefits of these two technologies, especially in the 

mmWave and higher frequency bands. While these two technologies are both built upon 

breakthroughs in dynamic metasurfaces, they are usually treated in isolation, without truly 

leveraging their joint potential for realizing the Internet of Surfaces (IoS) paradigm. Moreover, 

current communication models for RIS are oversimplified, are not physically consistent, and 

are often not used correctly. Being a newer concept, the fundamental performance limits of 

holographic massive MIMO transceivers are not yet understood, especially if these surfaces 

are large and are deployed in channels dominated by LOS propagation, as channels in high-

frequency bands are. The analysis of deploying RIS and holographic MIMO transceivers in 

wireless networks is limited to simple network topologies, while no system-level assessments 

have been reported to date except in [27]. 

 
Scheduling and RRM: Mobile networks are supported by efficient RRM techniques aiming 
to allocate the scarce available resources (time, frequency, space) to optimise several KPIs, 
resulting in a multi-objective optimisation problem. When evolving to a larger number of 
antennas and users, the number of resources to be allocated increases, making the problem 
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more challenging. Effective RRM requires near real-time processing, and further advances are 
needed to overcome the exponential complexity of link adaptation, precoding, and scheduling. 
Several important challenges of multi-segment networking that significantly influence the 
overall network performance have been recognized in [28], including network control, 
spectrum management, energy consumption, routing design and handover management, and 
security issues. Task offloading in IoT systems with the aid of air platforms can be optimized 
using Q-learning-based solutions [29]. Recently, ML-based solutions have been proposed for 
load distribution and load balancing in satellite networks [30].  

 

Energy consumption: Normally, the training of widely used ML models rely on a massive 
amount of data that need to be collected to cloud servers, usually far from where data is 
generated. Apart from the latency issues that this causes, these data servers consume large 
amounts of power for their operation. A characteristic example is the one of bitcoin whose total 
energy annual consumption has been estimated to be the same as the whole country of Norway. 
Such a problem in telecommunication networks is expected to be exacerbated with the 
integration of terrestrial networks with their non-terrestrial counterparts. Apart from their very 
large energy consumption, it is widely argued that ground stations would not be sufficient for 
the AI-based data processing of the massive amount of data generated by the integrated 
network [31]. New solutions to reduce the energy consumption in this context are needed. 

 
 

 

3 Conclusions 

The aim of this deliverable is to introduce PASSIONATE’s architecture, that will constitute the basis 

for which all the upcoming deliverables will rely on. Towards this we have first introduced the 

limitations of current telecommunication networks with respect to the deployment of AI methods. The 

methods used primarily rely on back-box approaches that have been successfully used in the past in 

other areas, such as computer vision, but it’s not apparent how they can be customized with respect to 

telecommunication networks and whether they are appropriate at all to be used. This motivates the use 

of the so-called “physics”-based AI approaches that leverage the inherent structure of 

telecommunication networks. 

Subsequently, we introduce the considered 3D PASSIONATE architecture that amalgamates the 3 

layers, namely the terrestrial, aerial, and space layers. Such a 6G architecture is a characteristic example 

of the need for customized, physics-based AI solutions for the resource allocation, to handle the large 

complexity and dynamicity of the network. Finally, areas of interest, based on the 3D architecture, have 

been introduced that identify the innovations to brought in this project. 
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